政府采购IT网_IT采购网-政府采购信息网

计算机能像人脑一样思考

政府采购信息网  作者:  发布于:2016-12-30 10:03:13  来源:环球科技
投稿邮箱为:tougao@caigou2003.com,投稿时请附作品标题、作者姓名、单位、联系电话等信息,感谢您的关注与支持!一经采用,本网会根据您的文章点击情况支付相应的稿酬。
  神经网络新突破!
 
  人脑非常奇妙。在几十年研究之后,人类仍然无法复制出人脑的超快计算速度。目前,计算机科学家可以利用的最强大工具是神经网络。这样的大型计算机网络能通过训练去解决复杂问题,而机制类似于人类的中枢神经系统,即利用不同层次的神经元解决问题的不同部分,最终合并为适当的答案。
 
  这被称作“监督学习”,而真正的人工智能意味着,神经网络需要学会如何自动完成“无监督学习”。这正是芬兰创业公司CuriousAI希望实现的目标。
 
  神经科学应用于人工神经网络
 
  在神经科学中,名为“速率编码”的理论认为,大脑中神经元的激发速率越高,神经元就越活跃。神经元持续被激发。而上世纪80年代时,科学家发现,神经元会将自身组织在一起,代表不同的信息。
 
  这一理论被称作“临时编码”。理论认为,神经元的激发时机很重要,而准确的激发时机定义了在数万神经元中哪些神经元属于同一群体。因此,一部分神经元可以同时激发,帮助大脑识别一系列对象中的某个对象,例如一堆办公用品中的一块红布,而另一部分神
 
  经元会告知大脑,其他对象都属于背景信息。
 
  拉斯姆斯表示:“我们的计算机算法集成了临时编码机制。我们在神经网络的每层中保存多个拷贝。整个神经网络被复制了4次。这意味着系统可以学习得知,每个拷贝代表了某个特定对象,而将这些对象合并在一起,就可以与原始图像进行匹配。”拉斯姆斯此前曾是英伟达的软件工程师,目前正在芬兰阿尔托大学从事深度学习的博士研究工作。
 
  “通过将图像分为不同的4组,神经网络可以自行编码图像。这就是无监督学习,我们不用对系统进行任何标记。当我们向神经网络展示图片时,它会将图片自主分解成为元素。”
 
  在神经网络将图片分解为单独元素之后,归类和识别对象就变得更容易,因为这些对象不会相互重叠,导致图像模糊不清。
 
  知觉分组给深度学习带来变革
 
  研究人员最初指导神经网络在无监督的情况下分析图片,组织对象,随后向图像加入标记信息(监督学习),从而观察系统究竟学会了什么。他们发
 
  现,CuriousAI的Tagger系统能实现75.1%的准确率。
 
  作为对比,传统神经网络的准确率只有21%,比随机猜测的准确率仅仅高出1%。
 
  拉斯姆斯表示:“这是革命性的研究,这使得无监督学习获得了进一步发展。通过让机器获得对象的概念,我们实现了更类似人脑的无监督学习。这可以帮助未来的研究,让神经网络进行更高层次的推理,学习对象与环境的相关性。”
 
  CuriousAI正在寻找工业界的合作伙伴,在现实世界的人工智能系统中试点其深度学习技术。目前,该公司正与希望发展无人驾驶技术的汽车厂商进行接触。
本网拥有此文版权,若需转载或复制,请注明来源于政府采购信息网,标注作者,并保持文章的完整性。否则,将追究法律责任。
网友评论
  • 验证码: